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conservation form for uniform mesh size grids [15] and for
nonuniform mesh sizes [16]. Those locally exact schemesA new finite variable difference method (FVDM) on finite differ-

encing is presented. The essence of this method consists in de- are characterized by determining the difference coeffi-
termining the optimum spatial difference such that the total variance cients so that the resulting difference equation satisfies the
of the solution is a minimum under the condition that characteristic exact solution of the convection–diffusion equation with
roots of the resulting difference equation are always nonnegative

constant coefficients. The difference coefficients dependto ensure the numerical stability. The present FVDM is applied to
on local velocities and these locally exact schemes arethe locally exact numerical scheme (LENS). The optimum spatial
nonlinear, resulting in their possessing the possibility ofdifference of the LENS is derived in terms of local mesh Reynolds

numbers. By using this optimum spatial difference the numerical being free from the Godonuv theorem.
accuracy of the LENS for the linear convection–diffusion equations Those locally exact schemes have been extended to
is increased without numerical oscillations for all mesh Reynolds transport equations with absorption [17, 18] and source
numbers. The present study suggests that an optimum spatial differ-

terms [19]. The present author proposed the LENS (locallyence from the viewpoint of numerical stability and accuracy exists
exact numerical scheme) [20], including the sources andaccording to the numerical schemes. Q 1996 Academic Press, Inc.

absorption, in which the sources are not constant but lo-
cally polynomial, and the spatial distribution of the coeffi-

1. INTRODUCTION cients of the transport equation in a control volume is
taken into consideration, based on a two-region model

So far several high-order numerical schemes with con- [21]. The LENS shows [22] stable and accurate solutions
stant difference coefficients for the convection term in for transport equations with source terms, as compared
transport equations have been developed [1–5], based on with the conventional high-order schemes such as the
polynomial differencing. However, these linear high-order LECUSSO and QUICK schemes.
schemes tend to suffer from the Godunov theorem [6] When we construct numerical schemes, numerical stabil-
regarding the monotonicity of numerical solutions. ity and good accuracy are required for the numerical
Namely, numerical solutions with linear high-order schemes. Regarding the numerical stability, the stability
schemes may happen to show unphysical oscillations (nu- study of difference schemes for one-dimensional convec-
merical oscillations) when mesh Reynolds or Peclet num- tion–diffusion equations on the basis of the characteristic
bers exceed a critical value (approximately 2). To cope equation roots was performed by Degtyarev et al. [23].
with this instability problem, nonlinear schemes preserving Independently, the present author performed the stability
monotonicity such as the FCT [7] and FRAM [8] tech- analysis for the LECUSSO scheme in uniform [16] and
niques to suppress the local oscillations, and the TVD nonuniform mesh sizes [24] by using a characteristic poly-
schemes [9, 10] with a numerical flux limiter function have nomial method, in which the necessary and sufficient condi-

tions against numerical oscillations for steady state prob-been proposed.
lems are that all the roots of the characteristic equationsOn the other hand, the concept of locally exact numerical
for the difference equations be nonnegative. Regardingdifferencing was introduced by Allen and Southwell [11],
the numerical accuracy, it has been so far defined as theupon which numerical schemes involving three points in
lowest order of the truncation errors of the differencea one-dimensional field were developed [11, 12]. Beyond
equations. However, in case the numerical solutions in-these, the LSUDS (Leonard super upwind scheme) [13]
volve the numerical oscillations the conventional definitionand the LECUSSO (locally exact consistent upwind
for the accuracy is not reasonable but the variance definedscheme of second order) [14] were proposed. The LEC-
as the total deviation from its exact solution, if any, or itsUSSO and LSUDS schemes use four and five base points
reference solution which is obtained with a fine mesh grid,in one-dimension, respectively. Versions of the LECUSSO
is reasonable.scheme have been proposed which are formulated in a
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On the other hand, in the conventional FDM (finite Fig. 1 with the uniform mesh size Dx. In Eq. (3), p 5 As

corresponds to the conventional FDM. Here we considerdifference method), a spatial mesh increment Dx has been
used as the spatial difference for the discretization. In this 0 , p , 1. Then fi1p and fi2p for v . 0 are approximated

by the following expressions based on the upwind differ-paper a new finite variable difference method FVDM is
proposed, in which a variable spatial difference, instead of encing:
the conventional Dx is adopted for the discretization of

fi2p 5 a fi 1 bfi21 1 cfi22 , (4a)the convection term. The present FVDM is applied to the
LENS based on the locally exact numerical differencing. fi1p 5 a9fi11 1 b9fi 1 c9fi21. (4b)
The variable spatial difference is optimized from the view-
point of numerical stability and accuracy. Namely, an opti- In Eqs. (3) and (4), if p is larger than As, the upwinding
mum spatial difference for the LENS is determined in weight becomes large. Hence p means of a kind of up-
terms of the mesh Reynolds number such that at first the winding parameter. Next we determine the difference coef-
characteristic roots of the resulting difference equation are ficients a, b, c, a9, b9, and c9.
to be always nonnegative to assure the numerical stability

2.3. Optimized LENS Schemefor any mesh Reynolds number and, then, the variance of
the numerical solution is a minimum. Thus the optimized 2.3.1. Difference Coefficients
LENS with the optimum spatial difference has been exam-

We impose the condition that Eqs. (4a) and (4b) satisfyined through numerical experiments.
identically the exact solution Eq. (2) of Eq. (1) for arbitrary
values of C1 and C2 . According to the mathematical proce-

2. MATHEMATICAL FORMULATION
dures in Ref. (20) or (22), we get the following matrix
equations for the difference coefficients:2.1. Transport Equations

We consider the one-dimensional, linear convection–
diffusion equation,

[M] 3
a

b

c
45 3

1

xi2p

exp[Rxi2p]
4 , (5)

d2f

dx2 2 R
df

dx
5 0, (1)

[N] 3
a9

b9

c9
45 3

1

xi1p

exp[Rxi1p]
4 , (6)where f is the transported quantity and x denotes the

Cartesian space coordinate. R is the ratio of the trans-
porting velocity v to the diffusion parameter n such as the
kinematic viscosity. where

Here we assume R is constant. Then the general solution
for Eq. (1) is given as

[M] 5 3
1 1 1

xi xi21 xi22

exp[Rxi] exp[Rxi21] exp[Rxi22]
4 , (7)

f 5 C1 exp[Rx] 1 C2 , (2)

where C1 and C2 are constants determined by the boundary
conditions, but here they are not necessary to be specified,

[N] 5 3
1 1 1

xi11 xi xi21

exp[Rxi11] exp[Rxi] exp[Rxi21]
4 , (8)as explained later.

2.2. Difference Formula
If p is given in the above equations, we obtain a, b, c,We approximate the convection term in Eq. (1) using

a9, b9, and c9 from Eqs. (5)–(8). Next we will determinethe present FVDM as follows:
the optimum value of p from the viewpoints of numerical
stability and accuracy.

df

dx
5

(fi1p 2 fi2p)
2p Dx

. (3) 2.3.2. Characteristic Equation

Discretizing the convection and diffusion terms in Eq.
(1) with Eq. (3) and the second-order central scheme, re-Here fi1p and fi2p are the transported quantities at x 5

xi 1 p Dx, and x 5 xi 2 p Dx, respectively as shown in spectively, we have
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FIG. 1. Finite spatial difference in FVDM.

(fi11 2 2fi 1 fi21) (l 2 1)h[1 2 (Rm/2p)a9]l2

2 [1 1 (Rm/2p)(1 2 c9 2 a)]l 2 (Rm/2p)cj 5 0.
(15)

2(Rm/2p)h[a9fi11 1 b9fi 1 c9fi21] (9)

2[afi 1 bfi21 1 cfi22]j 5 0,
From this equation, we obtain the other two roots

with Rm 5 RDx (mesh Reynolds number) in a uniform
mesh size grid. Rearranging the above equation yields the l2 5

1 1 (Rm/2p)(1 2 c9 2 a) 1 Ïo
2[1 2 (Rm/2p)a9]

, (16a)
difference equation

l3 5
1 1 (Rm/2p)(1 2 c9 2 a) 2 Ïo

2[1 2 (Rm/2p)a9]
, (16b)(10)Afi11 1 Bfi 1 Cfi21 1 Dfi22 5 0,

where
where

A ; 1 2 (Rm/2p)a9, B ; 2[2 1(Rm/2p)(b9 2 a)],

C ; 1 2 (Rm/2p)(c9 2 b), D ; (Rm/2p)c.
o ; [1 1 (Rm/2p)(1 2 c9 2 a)]2

(17)
1 4[1 2 (Rm/2p)a9](Rm/2p)c.

(11)

2.3.3. Stability Condition
Equation (10) has an exact solution

Since the numerical oscillation is due to the behavior of
an exact solution of the difference equation, and not the(12)fi 5 a(l1)i 1 b(l2)i 1 c(l3)i,
numerical instability due to an accumulation of roundoff
errors, we examine the behavior of Eq. (12). Even if onewhere a, b, and c are constants determined by the bound-
of the roots (l1 , l2 , l3) is negative, fi oscillates with theary conditions. In Eq. (12), l1 , l2 , and l3 are the roots of
wave length of 2Dx as seen in Eq. (12). Therefore, thethe characteristic equation
necessary and sufficient condition for the smooth solution
is that all the characteristic roots (l1 , l2 , l3) are real and(13)Al3 1 Bl2 1 Cl 1 D 5 0.
nonnegative [16, 24]. Namely, we have the stability con-
dition:Since a 1 b 1 c 5 1 and a9 1 b9 1 c9 5 1 hold in Eqs.

(5)–(8), from Eq. (11) we get the relation
(18)o ^ 0, l1 ^ 0, l2 ^ 0, l3 ^ 0.

A 1 B 1 C 1 D 5 2(Rm/2p)
We numerically examine the dependence of the charac-[(a9 1 b9 1 c9) 2 (a 1 b 1 c)] (14)

teristic roots on p (0.1 % p % 1) for (0.1 % Rm % 1000).
5 0. Here we consider Rm of up to 1000, since Rm reaches a

value of several hundreds in usual hydraulic calculations.
The first stability condition o ^ 0 is always fulfilled forHence Eq. (13) has the root l1 5 1 and can be factorized as



304 KATSUHIRO SAKAI

FIG. 2. Dependence of l2 , l3 , and S on p at Rm 5 2. FIG. 4. Dependence of pa and pv on Rm.

1 2 (Rmc/2)a9(1.0, Rmc) 5 0. (20)any p and Rm. Figures 2 and 3 show the dependence of
o, l2 , and l3 on p at Rm 5 2 and Rm 5 10, respectively.

At first we determine Rmc by numerically solving Eq.From these figures, we can see that both l2 and l3 are
(20). We obtain exactly Rmc 5 2. Then we numericallypositive for all p under consideration in the case of Rm 5
solve Eq. (19) for Rm . Rmc and obtain the asymptote2, while in the case of Rm 5 10 an asymptote (p 5 pa) for
pa in terms of Rm. Figure 4 and Table I show the depen-l2 exists, and l2 is negative for p . pa . At p 5 As both l2
dence of pa on Rm. If p exceeds pa , l2 becomes negativeand l3 are always positive. This is the reason why the
and the solution Eq. (12) oscillates. Therefore, to ensureoriginal LENS with p 5 As shows stable solutions.
the numerical stability, p must beThe asymptote (p 5 pa) for l2 occurs when the denomi-

nator of Eq. (16) is zero. Namely, the equation to deter-
(for Rm % 2) arbitrary value of 0 , p , 1, (21a)mine pa is

(19)1 2 (Rm/2pa)a9(pa , Rm) 5 0,
TABLE I

where the notation a9(pa , Rm) is used, since the coefficient Dependence of pa and po on Rm
a9 involves p and Rm as parameters. When p approaches

Rm pa 5 F(Rm) popa , the numerator of l3 , given by Eq. (16b) approaches
zero. Hence l3 varies continuously even in the vicinity of 0.1 10.000000 0.707140 G(Rm)
p 5 pa . A critical value Rmc, where l2 can be negative 0.5 3.626053 0.707840

1.0 1.799491 0.710010for Rm greater than Rmc, is given by Eq. (19) with pa 5
1.5 1.242192 0.7135001.0, which is the maximum value of p. Namely, the equation
2.0 1.000000 0.718160to determine Rmc is
3.0 0.819471 0.730170
4.0 0.774213 0.744290
6.0 0.776796 0.773220
8.0 0.798949 0.798500

10.0 0.819149 0.819090
12.0 0.835739 0.835730
13.0 0.842868 0.842860
14.0 0.849344 0.849343 Eq. (24b)
15.0 0.855349 0.855348
17.0 0.865625 0.865625
20.0 0.878387 0.878387 Eq. (24c)
25.0 0.894512 0.894512
30.0 0.906458 0.906458
50.0 0.934263 0.934263
75.0 0.951006 0.951006

100. 0.960477 0.960477
500. 0.988935 0.988935
700. 0.991620 0.991620

1000. 0.993779 0.993779
FIG. 3. Dependence of l2 , l3 , and S on p at Rm 5 10.
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FIG. 5. Dependence of variance s on p at small Rm.

FIG. 6. Dependence of variance s on p at middle Rm.

(for Rm . 2) 0 , p , pa 5 F(Rm). (21b)

shown in Fig. 4, together with pa , from which the mutual
From Table I we can construct the function F(Rm) by relation between pv and pa can be seen.
fitting a regression line such as the least squares method, According to the above survey calculations, we construct
when necessary. the correlation equation of pv with respect to Rm:

2.3.4. Variance
(for 0 , Rm % 14) pv 5 G(Rm), (23a)

Here we evaluate the dependence of the variance of
numerical solutions on p. We define the variance s as (for 14 % Rm % 20) pv 5 F(Rm)

2 1026(20 2 Rm)/6, (23b)

s ; 1
n O

n

i51
[fi 2 fe(xi)]2, (22) (for 20 % Rm) pv 5 F(Rm). (23c)

The function G(Rm) for Rm less than 14 is shown as pvwhere n is the total mesh number, fi and fe(xi) represent
in Fig. 4 and as po in Table I.the numerical solution and the exact solution at the mesh

The other calculations with the total mesh number n 5number i, respectively.
20 were performed to check the dependence of pv on n,To evaluate s we perform typical calculations in one-
but pv was the same as Eq. (23). Hence the value of p todimensional geometry with the uniform mesh Dx 5 1/n,
minimize s hardly depends on n at least greater than 15.in which the total mesh number n and total computational

length are 15 and 1, respectively. The boundary values at
x 5 0 and x 5 1 are set f(0) 5 1 and f(1) 5 0. This
calculation with a Dirichlet outflow boundary condition is
a difficult problem since it generates a thin boundary layer
near the exit (x 5 1) as the mesh Reynolds numbers in-
crease.

We perform survey calculations with double precision
by using the increment Dp 5 1026 over 0 , p , 1, and
find the value of p which minimizes s (we denote pv).
Figures 5, 6, and 7 show the dependence of s on p for
Rm % 2, for 5 % Rm % 100, and for 500 % Rm % 1000,
respectively. It is noticeable that s in these figures signifi-
cantly decreases in the vicinity of pv . We can see in Fig. 5
that pv exists around 0.71 for Rm % 2. In Figs. 6 and 7,
where the asymptote for l2 is also shown, pv for Rm 5 5
exists at p slightly smaller than pa , while pv approaches pa

as Rm increases and it becomes almost equal to pa at Rm
FIG. 7. Dependence of variance s on p at large Rm.greater than about 10. The dependence of pv on Rm is
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TABLE II2.3.5. Optimum Value of p

Comparison of Numerical Solutions with theIn order to optimize the numerical scheme, we initially
Analytical Solutionrequire that the roots of the characteristic equation of

the resulting difference equation must be nonnegative to I Exact solution Original Optimized
ensure the numerical stability for any mesh Reynolds num-
ber under consideration (0.1 % Rm % 1000). Next we Case a, Rm 5 1.00, optimum p 5 0.71001

1 1.00000 1.00000 1.00000require that the variance of the numerical solution is a
2 0.99992 0.99992 0.99992minimum under the stability condition.
3 0.99971 0.99964 0.99971In the previous section, the value of pv to minimize the
4 0.99913 0.99890 0.99913

variance s is always smaller than or equal to pa 5 F(Rm). 5 0.99757 0.99697 0.99757
Namely, pv given by Eq. (23) satisfies the stability condition 6 0.99331 0.99191 0.99331

7 0.98173 0.97868 0.98173given by Eq. (21), except where pv just equals pa for Rm
8 0.95026 0.94410 0.95026greater than 20. Although pa for Rm ^ 20 is the boundary
9 0.86470 0.85373 0.86470between stable and unstable domains, the solutions with

10 0.63215 0.61749 0.63215
p 5 pa were still stable according to numerical experiments. 11 0.00000 0.00000 0.00000
Accordingly, the optimum p (we denote po) to fulfill the

Variance s 3.498 3 1025 2.482 3 10214

above two requirements (stability and accuracy) is

Case b, Rm 5 100.0, optimum p 5 0.960477
(for 0 , Rm % 14) po 5 G(Rm), (24a)

1 1.00000 1.00000 1.00000
2 1.00000 1.00000 1.00000(for 14 % Rm % 20) po 5 F(Rm)
3 1.00000 1.00000 1.000002 1026(20 2 Rm)/6, (24b)
4 1.00000 1.00000 1.00000
5 1.00000 1.00000 1.00000(for 20 % Rm) po 5 F(Rm). (24c)
6 1.00000 1.00000 1.00000
7 1.00000 1.00000 1.00000

Table I shows the dependence of po on Rm, together 8 1.00000 1.00000 1.00000
9 1.00000 1.00000 1.00000with pa .

10 1.00000 0.99336 1.00000From Fig. 4 and Table I, an interesting result is found
11 0.00000 0.00000 0.00000that the optimization of the LENS from the viewpoint of

Variance s 4.005 3 1025 8.715 3 10222numerical stability and accuracy for large mesh Reynolds
numbers greater than about 10 is achieved when a root
of the characteristic equation for the resulting difference
equation approaches its asymptote, namely when the char-
acteristic roots have poles. d2f

dx2 2 R
df

dx
2 Sf 1 Q 5 0, (25)

3. TEST CALCULATIONS AND DISCUSSION
where S and Q are the intensity of the absorption and
source, respectively, and Q 5 Q0(x 2 0.5)2. The exactFirst, we compare the exact solution with the numerical

solutions by using the original LENS with p 5 As and the
optimized LENS scheme with p 5 po given by Eq. (24).
The computational conditions are the same as in the above
survey calculations with the total mesh number n 5 10.
Table II shows the comparison of those two solutions at
Rm 5 1 and 100. It is remarkable that the optimized LENS
predicts the exact solution within five significant figures,
even with the small mesh number n 5 10. Especially the
variance at Rm 5 100 is quite small and the numerical
accuracy, based on the total deviation from the analytical
solution, turns out to be highly increased.

Next it is interesting whether po , given by Eq. (24),
evaluated on the convection–diffusion equation without
absorption and source terms, is effective for other types
of transport equations. Here we consider the transport

FIG. 8. Comparison of solutions with Rm 5 10, S 5 10, and Q0 5 1.equation with absorption and source terms such as
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FIG. 11. Comparison of solutions with Rm 5 10 and S(x) 5 104FIG. 9. Comparison of solutions with Rm 5 10, S 5 250, and Q0 5 1.
(0.55 % x % 1).

solution of Eq. (25) is shown in Ref. (20). We solve Eq. The analytical solution is easily obtained by imposing the
(25) under the same computational conditions that were continuous conditions of f and df/dx at the inner bound-
used in the first test calculations. ary (x 5 0.55). Figures 11 and 12 show the comparison of

Figures 8, 9, and 10 show the comparison of solutions solutions with S(x) 5 104 for 0.55 % x % 1 at Rm 5 10,
with (Rm 5 10, S 5 10, Q0 5 1), (Rm 5 10, S 5 250, and S(x) 5 106 for 0.55 % x % 1 at Rm 5 50, respectively.
Q0 5 1), and (Rm 5 100, S 5 1000, Q0 5 10), respectively, In Fig. 11, the solution with the original LENS undershoots
together with the solutions by the QUICK scheme. In slightly in the region (0.7 % x % 0.8) with strong absorption.
these figures, OLENS means the optimized LENS with The solution with the optimized LENS at Rm 5 50 is in
the optimum spatial difference parameter po given by Eq. good agreement with the exact solution at the computa-
(24). The solutions with this optimized scheme are in good tional mesh points.
agreement with the exact solution at the mesh points with-
out oscillations, while the solutions with the QUICK

4. CONCLUSIONS
scheme show numerical oscillations.

In the above test calculations, the steep gradients of f A new FVDM on finite differencing was proposed, in
exist near the exit boundary (x 5 1), where the f just which the spatial difference for discretizing the convection
downstream from the steep gradient is not calculated but term is optimized so that the total deviation of the numeri-
is given as the boundary condition. Hence we solve Eq. cal solution from the exact solution of the convection–
(25) with a strong absorption in the half-computational diffusion equation is minimized, under the condition that
region (0.55 % x % 1) and without absorption in the other roots of the characteristic equation of the resulting differ-
region (0 % x , 0.55), using the same Dirichlet boundary ence equation are always nonnegative to ensure the numer-
condition (f(0) 5 1, f(1) 5 0) as the first test calculations. ical stability.

FIG. 12. Comparison of solutions with Rm 5 100 and S(x) 5 106FIG. 10. Comparison of solutions with Rm 5 100, S 5 1000, and
Q0 5 10. (0.55 % x % 1).
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